

Organic contaminants in fresh produce irrigated with treated wastewater: Human exposure and health concerns

Evyatar Ben Mordechay,

Tali Sinai, Tamar Berman, Rita Dichtiar, Lital Keinan-Boker, Jorge Tarchitzky, Vered Mordehay, Yehoshua Maor, Orly Manor, and Benny Chefetz

Department of Soil and Water Sciences Robert H. Smith Faculty of Agriculture, Food and Environment The Hebrew University of Jerusalem

Motivation

Water (reclaimed wastewater) \rightarrow soil (farmland) \rightarrow plant (*in planta* processes) \rightarrow human (consumer)

Treated wastewater usage in Israel

Central Bureau of Statistics; Israel

To estimate human exposure to contaminants of emerging concern (CECs) based on the consumption of produce irrigated with treated wastewater and to assess human health concerns.

Exposure assessment

CECs in produce crops

Human consumption

CECs in irrigated crops at the field: current state of knowledge

Riemenschneider et al. (2016)

28 pharmaceuticals; **7 crops**: Potato, carrot, leafy greens, tomato, pepper eggplant, and zucchini Collected from **1 field (per crop)**

Liu et al. (2020) 12 pharmaceuticals; 4 crops: Eggplant, wheat, long bean and cucumber Collected from 13 fields

> de Santiago-Martín et al. (2020) 4 pharmaceuticals; **1 crop**: Maize Collected from **5 locations**

Tadić et al. (2021)10 antibiotics;4 crops: Lettuce, tomato, beans, and cauliflowerOnly crops were collected from 6 fields

Camacho-Arévalo et al. (2021) 5 sulfonamides; 1 crop: Tomato Collected from 2 greenhouses

Sampling overview

- **469 fields (2017-2019)**
- 11 crops
- Treated wastewater irrigation
- Irrigation water, Soil, and Crop samples
- 65 contaminants

Irrigation water, Soil, and Crop

CECs in irrigation water, soils, and <u>avocado</u> plant (conc. ≥LOQ)

-**D**- 0

000;

CECs in irrigation water (treated wastewater)

Contaminants of emerging concern (CECs) in irrigation water

Accumulative concentration per sample (ng/L)

CECs in irrigated soils: Effect of wastewater treatment

CECs concentration in Leafy vegetables: Effect of soil organic matter (?)

CECs in produce crops

Human consumption

X

Article pubs.acs.org/est

Human Exposure to Wastewater-Derived Pharmaceuticals in Fresh Produce: A Randomized Controlled Trial Focusing on Carbamazepine

Ora Paltiel,^{*,†,‡,§} Ganna Fedorova,^{§,||} Galit Tadmor,^{†,§,||} Geffen Kleinstern,^{†,§} Yehoshua Maor,[§] and Benny Chefetz^{§,||}

[†]Braun School of Public Health and Community Medicine, Hadassah-Hebrew University of Jerusalem, Jerusalem 9112001, Israel [‡]Department of Hematology, Hadassah-Hebrew University Medical Center, Jerusalem 9112001, Israel

[§]The Hebrew University Center of Excellence in Agriculture and Environmental Health

^{II}Department of Soil and Water Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel

Proof of Concept Study

Paltiel et al., 2016

Contents lists available at ScienceDirect

Environment International

journal homepage: www.elsevier.com/locate/envint

Involuntary human exposure to carbamazepine: A cross-sectional study of correlates across the lifespan and dietary spectrum

Michael Schapira^a, Orly Manor^a, Naama Golan^b, Dorit Kalo^c, Vered Mordehay^b, Noam Kirshenbaum^b, Rebecca Goldsmith^{a,d}, Benny Chefetz^{b,*,1}, Ora Paltiel^{a,*,1}

^a Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem-Hadassah, Jerusalem 9112001, Israel

^b Department of Soil and Water Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel

^c Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 7610001, Israel

^d Public Health Services, Israel Ministry of Health, Jerusalem, Israel

Schapira et al., 2020

Produce corps consumption; Tali Sinai, Israel Ministry of Health

Rav Mabat adults survey 2014-2016; age 18-64; n = 2808 (g/person/day)

Cron		Moon + SD	Modian	OE th porcontilo	rile Percentage of total	
	Стор	Iviedii ± 3D	IVIEUIAII	55° percentile	produce consumption (%)	
	Tomato	68 ± 94	41	235	19 (19.1%)	
	Potato	40 ± 81	0	200	30 (11.2%)	
	Cucumber) 37 ± 69	11	150	41 (10.5%)	
	Apple) 29 ± 77	0	176	49 (8.2%)	
	Leafy vegetables) 22 ± 44	2	104	55 (6.1%)	
	Pepper	16 ± 49	0	87	60 (4.6%)	
	Onion	14 ± 26	0	64	64 (4.0%)	
	Banana	14 ± 47	0	128	68 (3.8%)	
	Carrot	13 ± 35	Duaduaa		71 (3.6%)	
	Orange	13 ± 62	<u>Produce (</u>	consumption	75 (3.6%)	
	Grapes	11 ± 65		6 alpercon/d	78 (3.1%)	
	Peach	10 ± 42	ISRAEL: 55	o g/person/u	ay 81(2.7%)	
	Watermelon	$^{9\pm47}$ Europe: 31/ $\sigma/persc$		1 g/norson/c	83 (2.6%)	
	Tangerine	6 ± 32	Luiope. Ji-	Luiope. J14 g/person/uay		
	Zucchini	6 ± 34	US: 330 g	/nerson/day	88 (1.7%)	
	Eggplant	6 ± 28			90 (1.4%)	
	Mango	5 ± 40	0	0	91 (1.1%)	
	Pear	4 ± 23	0	0	92 (1.1%)	
	Melon	4 ± 34	0	0	93 (1.1%)	
	Avocado) 4 ± 17	0	30	94 (1.1%)	
	Lemon	4 ± 22	0	15.1	100 (6.0%) 💙	
	Others (15 crops)	21	-	- 7	6% of the produce concumption	
0					070 OF the produce consumption	

CECs in produce crops

Human consumption

X

Human exposure

Exposure assessment approach

Conc. in edible crops × human consumption

Scenarios

High-

exposure

Meanexposure

Mean CEC concentration in produce × Mean produce consumption Maximum concentration × Mean consumption Extremeexposure

Maximum concentration × 95th percentile consumption

Human estimated exposure to CECs (ng CEC/adult person/day)

Current	Commonweal	Mean-level	High-level	Extreme-level	Extreme exposure			
Group	compouna	Gene	eral population na	=2808	Males n=1341	Females n=1467	Vegetarians n=126	Arabs n=491
Applancies	4-Aminoantipyrine	3	20	110	110	120	230	70
Analgesics	Acetaminophen	1	10	60	60	60	70	110
	Atenolol	1	30	160	170	160	190	280
A 1 1 1 1	Bisoprolol	0	1	7	7	7	8	10
Antiarrhythmics	Metoprolol	0	1	_		7	8	10
	Sotalol	0					60	80
	Carbamazepine	870	9	C			31,300	46,100
	Dihydroxy-carbamazepine	50		eatv	Greer		990	1,200
Anticonvulsants	Epoxide-carbamazepine	510	4				22,700	33,600
	Gabapentin	4		- -			270	390
	Lamotrigine	570	6	(33,700	50,200
A	Diazepam	10					1,200	400
Antidepressants	Venlafaxine	5					210	410
	Enrofloxacin	0					10	20
A setion i eve hiele	Sulfamethoxazole	20		• •			200	70
Antimicropials	Thiabendazole	1	10	60	60	60	70	100
	Trimethoprim	0	10	80	60	80	130	40
Antiparasitic	Crotamiton	1	20	80	80	80	100	130
Corrosion inhibitor	Benzotriazole	10	200	930	940	910	1,100	1,600
	Bezafibrate	160	310	2,500	2,600	2,400	520	3,700
Hypolipidemics	Warfarin	-	1	8	7	10	10	3
	Caffeine	20	250	1,400	1,500	1,300	1,200	1,900
Psychoactives	Cotinine	1	6	30	50	10	20	50
	Nicotine	40	380	2,100	2,200	2,100	2,100	3,000
Sweetener	Aspartame	2	40	220	210	220	300	300
	Sum	2,300	17,700	85,700	87,000	83,700	96,700	143,800
24		Mean conc. × Mean consumption	Max conc. × Mean consumption	Max 95 th percent	conc. × ile consumption		0.14	amg/person/day

Exposure

Acceptable daily intake (ADI) and threshold of toxicological concern (TTC)

Group	Compound	Lowest ADI (ng for a 70 kg person/day)	TTC class	TTC (ng for a 70 kg person/day)
	4-Aminoantipyrine	-	Genotoxic	10,500
Analgesics	Acetaminophen	220,000	Genotoxic	10,500
	Atenolol	28,000	1	2,100,000
Antiorrhythmics	Bisoprolol	-	1	2,100,000
Antiarmythmics	Metoprolol	8,400	1	2,100,000
	Sotalol	-	Genotoxic	10,500
	Carbamazepine	24,000	3	105,000
	Dihydroxy carbamazepine	23,000,000	3	105,000
Anticonvulsants	Epoxide carbamazepine	200,000	Genotoxic	10,500
	Gabapentin	-	3	105,000
	Lamotrigine	830,000	Genotoxic	10,500
Antidoprocepte	Diazepam	11,000	3	105,000
Antidepressants	Venlafaxine	-	1	2,100,000
	Enrofloxacin	21,000	3	105,000
Antimierabiele	Sulfamethoxazole	27,000	Genotoxic	10,500
Antimicropiais	Thiabendazole	70,000	3	105,000
	Trimethoprim	660,000	Genotoxic	10,500
Antiparasitic	Crotamiton	-	1	2,100,000
Corrosion inhibitor	Benzotriazole	-	3	105,000

Hazard quotient (HQ) = $\frac{\text{Exposure level (current study)}}{\text{ADI or TTC (literature data)}}$

Mean concentration in produce × Mean produce consumption

Maximum concentration × Mean consumption Maximum concentration × 95th percentile consumption

Hazard quotients for **Extreme** exposure level

Group	Compound	General population		Vegetarians		Arabs	
Group		ADI based	TTC based	ADI based	TTC based	ADI based	TTC based
Analgosics	4-Aminoantipyrine	NA	0.01	NA	0.02	NA	0.01
Analgesics	Acetaminophen	0	0.01	0	0.01	0	0.01
	Atenolol	0.01	0	0.01	0	0.01	0
Antiarrhythmics	Bisoprolol	NA	0	NA	0	NA	0
	Sotalol	NA	0	NA	0.01	NA	0.01
	Carbamazepine	1.13	0.26	1.3	0.3	1.92	0.44
	Dihydroxy-carbamazepine	0	0.01	0	0.01	0	0.01
Anticonvulsants	Epoxide-carbamazepine	0.10	1.86	0.11	2.16	0.17	3.20
	Gabapentin	NA	0	NA	0	NA	0
	Lamotrigine	0.04	2.77	0.04	3.21	0.06	4.78
Antidoproscants	Diazepam	0.06	0.01	0.11	0.01	0.04	0
	Venlafaxine	NA	0	NA	0	NA	0
	Enrofloxacin	0	0	0	0	0	0
Antimicrobials	Sulfamethoxazole	0	0.02	0	0.02	0	0.01
Antimicrobiais	Thiabendazole	0	0	0	0	0	0
	Trimethoprim	0	0.01	0	0.01	0	0
Antiparasitic	Crotamiton	NA	0	NA	0	NA	0
Corrosion inhibitor	Benzotriazole	NA	0.01	NA	0.01	NA	0.02

Limitations (?)

Underestimation (Exposure and Risk)

- Only 76% of the edible produce.
- Not all contaminants and metabolites.
- Health effect of the mixture is not fully evaluated.
- A 24-hour dietary recall is not necessarily representative of the overall diet.

Main findings and conclusions

- ★ Leafy greens exhibited the highest number and concentration of contaminants → main source of human exposure (mainly affected by the water quality).
- ✤ For the mean and high exposure scenarios → no human health concerns were predicted.
- For the extreme exposure scenario, HQs for lamotrigine, carbamazepine, and epoxide-CBZ were >1, indicating possible human health risks.
- By considering freshwater and treated wastewater irrigation, HQs for all contaminants were <1 indicating no human health concerns.</p>

What's next: Regulation? Treatment? Agricultural practices?

Contents lists available at ScienceDirect

Journal of Hazardous Materials

journal homepage: www.elsevier.com/locate/jhazmat

Pharmaceuticals in edible crops irrigated with reclaimed wastewater: Evidence from a large survey in Israel

Evyatar Ben Mordechay, Vered Mordehay, Jorge Tarchitzky, Benny Chefetz*

Department of Soil and Water Sciences, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hel Jerusalem, P.O. Box 12, Rehovot 7610001, Israel

Contents lists available at ScienceDirect

Water Research

journal homepage: www.elsevier.com/locate/watres

WATER

Wastewater-derived organic contaminants in fresh produce: Dietary exposure and human health concerns

	Contents lists available at ScienceDirect	Evyatar Ben Mordechay ^{a,b,1} , Tali Sinai ^{a,c,1} , Tamar Berman ^d , Rita Dichtiar ^c , Lital Keinan-Boker ^{c,e} , Jorge Tarchitzky ^a , Yehoshua Maor ^b , Vered Mordehay ^a , Orly Manor ^f , Benny Chefetz ^{a,*}
5-5 ² (2)	Science of the Total Environment	 ^a The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel ^b Phytor Lab for Drug Development, Hadassah Medical Center Hebrew University Biotechnology Park (JBP), Ein Kerem Campus, Jerusalem 91120, Israel ^c Israel Center for Disease Control, Israel Ministry of Health, Ramat Gan, Israel ^d Department of Environmental Health, Ministry of Health, Jerusalem, Israel
ELSEVIER	journal homepage: www.elsevier.com/locate/scito	^e School of Public Health, University of Haifa, Haifa, Israel ^f School of Public Health and Community Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel

Fate of contaminants of emerging concern in the reclaimed wastewater-soilplant continuum

Evyatar Ben Mordechay, Vered Mordehay, Jorge Tarchitzky, Benny Chefetz *

Department of Soil and Water Sciences, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Repover 7610001, Israel

Evyatar.mordechay@mail.huji.ac.il

HAZARDOUS