

Research on the environmental fate of organic chemicals using ¹⁴C-radiolabelling

Dr. Dieter Hennecke, <u>Dr. Kerstin Derz</u>, Fraunhofer IME International Spring School, May 2023

Carbon-14 / ¹⁴C

- Carbon-14, C-14, ¹⁴C or radiocarbon
- \circ Radioactive isotope
- Unstable with a half life of about 5700 years,
 ¹⁴C decays into nitrogen-14 (¹⁴N) through beta decay
- Sources: cosmic ray action on nitrogen in the atmosphere (cosmogenic nuclide), open air nuclear testing (1955-1980)

Carbon-12	Carbon-13	Carbon-14
6 Electrons	6 Electrons	6 Electrons
6 Protons	6 Protons	6 Protons
6 Neutrons	7 Neutrons	8 Neutrons
Nuclear/mass number	Nuclear/mass number	Nuclear/mass number
6+6= 12	6+7= 13	6+8= 14
99% of all carbon	up to 1% of all carbon	trace amounts (ca. 1 per 10 ¹² atoms)

\circ Radioactivity

- Unit: Bequerel (Bq), an
 older unit is Curie (Cu)
- Labelling in the aromatic
 ring (U-label) or at specific
 positions in the molecule

- Radiation protection: License for ¹⁴C necessary
- Handling of ¹⁴C-labelled test substances only in supervised or controlled areas (laboratories or outdoor facilities)

Measuring radioactivity

Detection of radioactivity (non-specific)

- Monitors measuring radioactivity on surfaces
- Liquid Scintillation Counting (LSC): Quantification of radioactivity in liquids
- Oxidizer: Combustion of solids followed by quantification of radioactivity ba Liquid Scintillation Counting (LSC)

Chromatographic measurements – What kind of substance (still including the radiolabel) is it? (specific)

- Radio-HPLC: HPLC equipped with an radiodetector
- Radio-TLC: TLC plates exposed to imaging plates sensitive to radioactive radiation

 Conventional analytical method (e.g. residue analytical method) for environmental matrices like soil, sediment, plant tissue etc.:
 You need to know for which substance your are looking for!

• ¹⁴C-labelling:

The substance is carrying a label so all metabolites until ${}^{14}CO_2$ can be tracked, i.e. the fate of the substance can be traced back by the radioactivity

Any radioactivity detected must be derived from the

parent compound!

Natural matrices like soil, plant material, sediment etc. are very complex and contain thousands of different organic substances.

To find a definite substance is like looking for a needle in a haystack

Where is it?

Degradation to CO₂?

Is it parent compound?

Are there metabolites detectable? Which ones?

Is there adsorption to soil or plant matrix?

Is something volatile formed?

10,0-

5,0-

0.0

-5,0+

10,0

20,0

HPLC analysis: UV-detection

والاعترار المربقي والمناصر والمرافع والمتقار والمتعارية والمتقار والمقاربة والمتعارية والمتعارية والمتعارية وال

40,0

50.0

60,0

70,0

30.0

min

90,0

80,0

HPLC analysis: radiodetection

- \circ $\,$ Metabolites can be traced back to the parent compound definitely
- Identification of the metabolites is possible by LC-HRMS and radiodetection and/or the characteristic exact masses

Non-extractable Radioactivity (NER)

Using ¹⁴C-labelled chemicals **Using non-labelled chemicals** Analysis (LSC, Extract radio-HPLC/TLC Analysis Matrix Matrix (e.g. LC-Extract (e.g. soil) e.g. soil MS/MS) Remaining Analysis matrix (LSC) (e.g. soil) **Non-extractable radioactivity = NER**

ity = NER

Mass balances

• Mass balances based on radioactivity recovered in the different compartments are possible

Radioactivity detected in extract(s) [% of applied radioactivity]	Radioactivity detected in the matrix after extraction NER [% of applied radioactivity]	Radioactivity detected in traps for ¹⁴ CO ₂ [% of applied radioactivity]	Radioactivity detected in traps for organic volatiles [% of applied radioactivity]	Total recovery [% of applied radioactivity]	
90	5	2	n.d.	97	۱
5	3	10	60	78	

 Test systems for environmental simulation studies in a lab scale - for research or regulatory approval

Investigating the fate of an organic substance

Hydrolysis, Photolysis (OECD 111,

Adsorption/Desorption (OECD 106)

Transformation in Soil (OECD 307)

Transformation in Water/Sediment Systems (OECD 308)

Transformation in Surface Water (OECD 309)

Degradation in Sewage Treatment Plants (OECD 314)

Metabolism in Plants (OECD 501)

Metabolism in Rotational Crops (OECD 502)

 Test systems for environmental simulation studies in a lab scale - for research or regulatory approval

Investigating the fate of an organic substance

Hydrolysis, Photolysis (OECD 111,

Adsorption/Desorption (OECD 106)

Transformation in Soil (OECD 307)

Transformation in Water/Sediment Systems (OECD 308)

Transformation in Surface Water (OECD 309)

Degradation in Sewage Treatment Plants (OECD 314)

Metabolism in Plants (OECD 501)

Metabolism in Rotational Crops (OECD 502)

Test systems for environmental simulation studies in a lab scale - for research or regulatory approval

Scheme of gas traps (anaerobic)

Investigating the fate of an organic substance

Hydrolysis, Photolysis (OECD 111,

Adsorption/Desorption (OECD 106)

Transformation in Soil (OECD 307)

Transformation in Water/Sediment Systems (OECD 308)

Transformation in Surface Water (OECD 309)

Degradation in Sewage Treatment Plants (OECD 314)

Metabolism in Plants (OECD 501)

Metabolism in Rotational Crops (OECD 502)

Investigating the fate of an organic substance

Hydrolysis, Photolysis (OECD 111,

Adsorption/Desorption (OECD 106)

Transformation in Soil (OECD 307)

Transformation in Water/Sediment Systems (OECD 308)

Transformation in Surface Water (OECD 309)

Degradation in Sewage Treatment Plants (OECD 314)

Metabolism in Plants (OECD 501)

Metabolism in Rotational Crops (OECD 502)

Lysimeter Studies

 Test systems for environmental simulation studies in a lab scale - for research or regulatory approval

• Outdoor studies in a bigger scale

Investigating the fate of an organic substance

Hydrolysis, Photolysis (OECD 111,

Adsorption/Desorption (OECD 106)

Transformation in Soil (OECD 307)

Transformation in Water/Sediment Systems (OECD 308)

Transformation in Surface Water (OECD 309)

Degradation in Sewage Treatment Plants (OECD 314)

Metabolism in Plants (OECD 501)

Metabolism in Rotational Crops (OECD 502)

Investigating the fate of an organic substance

Hydrolysis, Photolysis (OECD 111,

Adsorption/Desorption (OECD 106)

Transformation in Soil (OECD 307)

Transformation in Water/Sediment Systems (OECD 308)

Transformation in Surface Water (OECD 309)

Degradation in Sewage Treatment Plants (OECD 314)

Metabolism in Plants (OECD 501)

Metabolism in Rotational Crops (OECD 502)

Application

Degradation / Transformation in Soil

$\circ~$ Example 1: Degradation of a pesticide

- DT50 of parent compount was 26d, metabolites are formed
- Mineralisation is low
- NER-formation biotic

Degradation / Transformation in Soil

• Example 2: Degradation of an antibiotic

- Rapid mineralisition
- NER-formation abiotic
- Stopped at 28 d (90% Trigger reached)

Degradation / Transformation in Soil

• Example 3: Degradation of an another antibiotic compound

- Rapid NER-generation but:
- Nevertheless considerable mineralisation till study end!

Main reason for NER: biotic processes! Apparently bioavailability of NER No release of parent substance!

Degradation of Polymers

Fate testing of polymeric flocculants

Synthesis of ¹⁴C-polyacrylamide
 Average molecular weight: 6 Mio Da

Sewage sludge

flocculation

dewatering

Application to outdoor soil lysimeter

Degradation of Polymers

Fate testing of polymeric flocculants

- GPC-analysis (separation by hydrodynamic volume of molecules, largest molecules elute first) coupled to ^{14C}-detection
- Over time the distribution of the molecular masses shifted to smaller sizes

RESIDUE

Irrigation of plants with (artificial) wastewater including ¹⁴C-labelled Lamotrigine and Carbamazepine

Uptake of the radiolabel into the plants

Many thanks for your attention

Contact

Dieter.hennecke@ime.fraunhofer.de

Kerstin.derz@ime.fraunhofer.de

Follow us on:

www.residueproject.it

https://twitter.com/ResidueProject

Fraunhofer

אוניברסיטה העברית בירושלים THE HEBREW UNIVERSITY OF JERUSALE